Antigens of Corynebacterium pseudotuberculosis with promising potential for caseous lymphadenitis vaccine development: a literature review

Antígenos de Corynebacterium pseudotuberculosis com potencial promissor para o desenvolvimento de vacinas contra linfadenite caseosa: uma revisão de literatura

Eliane Macedo Sobrinho Santos*,1,2, Hércules Otacílio Santos3, Alexsander Rodrigues Cangussu4, Kattyanne Souza Costa5, Ivoneth dos Santos Dias6

ABSTRACT

The caseous lymphadenitis (CL) is an infectious disease of chronic evolution that affects sheep and goats, causing great economic losses in goat and sheep production. CL is caused by Corynebacterium pseudotuberculosis. Diagnosis is based on the isolation and identification of the agent and may be carried out serologically ELISA. Vaccination of the flock can be an important tool in preventing CL. The search for new antigens can generate vaccines that are more effective in disease control. Thus, the purpose of this article is to summarize the state of the art on the main antigens of Corynebacterium pseudotuberculosis with good potential for caseous lymphadenitis vaccine development. Various types of vaccines are commercially available and are based on live attenuated and/or inactivated microorganisms, microorganism extracts and/or recombinant proteins or subunits. In addition to the available forms are in the experimental stage DNA-based vaccines, and those using live recombinant microorganisms. We can realize that several studies have been conducted to find antigens for vaccine formulations that can ensure a good immune response to vaccinated animals. Some studies have reported promising antigens and others have shown that there is a need to search for new antigens for CL vaccine production more efficient. Although several studies have already been made in an attempt to develop an effective vaccine against the CL, there is a vast field to be searched and many antigens can still be discovered and studied to give a CL vaccine that is effective, inexpensive and practical.

Keywords: Prophylaxis. Goats. Sheep. Immunity.

RESUMO

A linfadenite caseosa (LC) é uma doença infecciosa de evolução crônica que afeta ovinos e caprinos, causando grandes perdas econômicas na produção de caprinos e ovinos. LC é causada por Corynebacterium pseudotuberculosis. O diagnóstico baseia-se no isolamento e identificação do agente e

1*Corresponding author: elianemsobrinho@hotmail.com
2Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
3Instituto Federal do Norte de Minas Gerais - Campus Araçuaí, Minas Gerais, Brazil.
4University of São Paulo, Industrial Biotechnology Laboratory - USP. São Paulo, Brazil.
5Research and Development Laboratory of Vallée S.A., Montes Claros, Minas Gerais, Brazil.
6Department of Biology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.

Recebido para publicação em 01 de agosto de 2016
Aceito para publicação em 18 de agosto de 2016

Cad. Ciênc. Agrá., v. 8, n. 2, p. 90-99, 2016 - ISSN 2447-6218
Antigens of *Corynebacterium pseudotuberculosis* with promising potential for caseous lymphadenitis vaccine development: a literature review

Introduction

The caseous lymphadenitis (CL) is an infectious disease of chronic evolution that affects sheep and goats, causing great economic losses in goat and sheep production mainly because of the disqualification and condemnation of carcasses and devaluation of the skin (BAIRD; FONTAINE, 2007). It is a rare occurrence of zoonosis (MOURA-COSTA et al., 2008). This disease is characterized by abscess formation with purulent content of greenish yellow color and viscous. These may be presented clinically in two forms that is, internal form and external form. Internal or visceral form affects internal lymph nodes, while the external or superficial form affects palpable lymph nodes (ALVES et al., 2007).

CL is caused by *Corynebacterium pseudotuberculosis*. Corynebacterium genus is formed by gram-positive bacteria, in shape of small coccobacilli or filamentary, facultative anaerobic, facultative intracellular parasite. The agent is very resistant in the environment (BATEY, 1986; MOTTIA et al., 2010). The main agent route of elimination is the content of abscesses that when fester contaminate the environment. Transmission occurs by direct contact with secretions from the abscess or needles, shearing equipment, facilities, fomites. The gateway are superficial wounds in the skin or mucosa. It has high morbidity and low mortality. The infection may also be acquired through inhalation or ingestion of the bacterium (OREIBY, 2015).

Diagnosis is based on the isolation and identification of the agent and may be carried out serologically ELISA and hypersensitivity test known as linfadenina (DORELLA et al., 2006; SEYFFERT et al., 2010). Treatment of lymph nodes infarcted can be realized with a vertical incision and drainage of purulent entire content and placement of iodine solution (2%) so that there is cauterized or surgically excise the surface involved lymph nodes (NOZAKI et al., 2000).

Vaccination of the flock can be an important tool in preventing CL. Immunity against a particular infectious disease can be induced by various types of vaccines which are commercially available and are based on live attenuated and / or inactivated microorganisms (first generation vaccines), microorganism extracts and / or recombinant proteins or subunits (second generation vaccines). In addition to the available forms are in the experimental stage DNA-based vaccines (third generation vaccines), and those using live recombinant microorganisms. The commercial vaccines available against CL have some disadvantages such as low protection, need for periodic booster injections, and need to be kept under refrigeration (ABBAS et al., 2011).

The search for new antigens can generate vaccines that are more effective in disease control. Therefore, to know and better understand the studies conducted on this subject it is necessary to chart new directions. Thus, the purpose of this article is to summarize the state of the art on the main antigens of *Corynebacterium pseudotuberculosis* with good potential for caseous lymphadenitis vaccine development.
This is a systematic review. A search was conducted in the bibliographic reference of the MEDLINE/PubMed, with the key: "caseous lymphadenitis" and vaccine. Original articles in English were considered. The classification process was performed by two independent reviewers in two stages. First, the articles were submitted to complete reading for data extraction. In the second, the resolution of discrepancies between reviewers was made by consensus, with the participation of a third independent reviewer in case of doubt. The Preferred Reporting Items for Systemic Reviews and methodology Meta-Analyses (PRISMA) (MOHER et al., 2010) rules were followed, whenever possible.

This review follows an information flow as shown in Figure 1.

Figure 1 - Information flow with different phases from the literature review

Some antigens have already been tested in vaccines against CL

First, PLD exotoxin was tested as toxoid and was able to decrease the proliferation and spread of C. pseudotuberculosis the site of infection to other organs, which delayed disease development (ALVES; OLANDER, 1998). Another aspect in the formulation of vaccines has been the development of live attenuated bacteria or mutants by gene recombination. This is possible through gene deletion allegedly involved in pathogen virulence. Such vaccine candidate can produce stimuli for cytokine production which is
Basic proteins of *Corynebacterium pseudotuberculosis* with promising potential for caseous lymphadenitis vaccine development: a literature review

A vaccine produced with a mutant strain of *C. pseudotuberculosis* to aroQ gene was able to reduce the colonization of the lymph nodes. However, this attenuated strain was not sufficient to activate an immune response capable of protecting animals from infection with the wild type strain, leading only to a decrease in clinical disease severity (SIMMONS et al., 1998). Furthermore, studies have shown that mutant strains of Xa2 and ciuA of *C. pseudotuberculosis* are able to survive in the host without causing damage, and also stimulate the production of antibodies and cytokines. Thus it has been suggested that these genes are related to the virulence of *C. pseudotuberculosis* (Billington et al., 2002; Ribeiro et al., 2014).

A modern strategy for the production of more efficient vaccines is related to the genome of *C. pseudotuberculosis* and its molecular virulence determinants that provide new alternatives for the development of DNA and subunit vaccines (DORELLA et al., 2009). When administered to the host, this DNA allows the production of the antigenic protein vaccinated host's own cells and capable of inducing specific cellular and humoral immune response with memory (GARG et al., 2014). It was tested some DNA vaccines CL, and as target immunogenic proteins such as PLD membrane protein of *C. pseudotuberculosis* and protein produced by the Hsp60 gene (CHAPLIN et al., 1999; COSTA et al., 2011). The subunit vaccine when the host becomes an exogenous antigen. A recombinant protein that favorable results against experimental CL in mice was the CP40 (SILVA et al., 2014).

The Table 1 shows the selected studies in this review of the literature obtained from the MEDLINE/PubMed database. It is noteworthy that 57 articles were retrieved by the search keys used. After reading the summaries by two independent expert review, 11 were excluded because they do not address directly the development of vaccines against CL or are review articles. Still, 30 were excluded for not obtaining the full text by MEDLINE/PubMed. They then selected 16 articles for full reading, also by two independent expert review.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Some target antigens</th>
<th>Authors' conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santana-Jorge et al., 2016</td>
<td>SpaC, PknG, NanH</td>
<td>"In silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development."</td>
</tr>
<tr>
<td>Redusky et al., 2015</td>
<td>3-isopropylmalate dehydratase small subunit, 50S ribosomal protein L30, Chromosomal replication initiator protein DnaA</td>
<td>"Overall we provide valuable information of possible targets against C. pseudotuberculosis where some of these targets have already been discarded as drug discovery, but are also discarding targets that might be physiologically relevant but are not amenable for drug binding. We propose that the constructed in silico dataset might serve as a guideline while selecting putative protein candidates as drug able ones as effective measures against C. pseudotuberculosis."</td>
</tr>
<tr>
<td>Hassan et al., 2014</td>
<td>tcsR, mtrA, mdr, ispH, adk, gapA, glyA, fumC, gnd, and aspA</td>
<td>"We propose that some of these proteins can be selectively targeted using structure-based drug design approaches. Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our model one strategy is effective and can also be applicable to other pathogens."</td>
</tr>
<tr>
<td>Silva et al., 2014</td>
<td>rCP40, CP09</td>
<td>"rCP40 is a promising target in the development of vaccines against caseous lymphadenitis."</td>
</tr>
<tr>
<td>Ribeiro et al., 2014</td>
<td>CZ171053</td>
<td>"Because iron acquisition in intracellular bacteria is considered one of their most important virulence factors during infection, these results demonstrate the immunogenic potential of this mutant against CLA."</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Pinto et al., 2014</td>
<td></td>
<td>sigma factors varied</td>
</tr>
<tr>
<td>Bastos et al., 2013</td>
<td></td>
<td>C. pseudotuberculosis-secreted antigens adjuvanted with Quillaja saponaria saponins</td>
</tr>
<tr>
<td>Santos et al., 2012</td>
<td></td>
<td>150 genes, out of 377 from the whole ISPPE, representing 750 locus_tags, 227 genes account for 1135 locus_tags</td>
</tr>
<tr>
<td>Costa et al., 2011</td>
<td></td>
<td>hsp60 gene</td>
</tr>
<tr>
<td>Reference</td>
<td>Description/Details</td>
<td>Summary</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chaplin et al., 1999</td>
<td>targeting DeltaPLD as a CTLA-4 fusion protein</td>
<td>“We propose that targeting antigens to antigen-presenting cells offers a generic strategy for enhancing the efficacy of DNA vaccines.”</td>
</tr>
<tr>
<td>Simmons et al., 1998</td>
<td>aroQ and pld mutants</td>
<td>“The results suggest that aroQ mutants of C. pseudotuberculosis may be overly attenuated for use as a CLA vaccines or as vaccine vectors.”</td>
</tr>
<tr>
<td>Stanford et al., 1998</td>
<td>Bacterial cells (0.86 mL/dose) and MDP-GDP (0.4 mL/dose)</td>
<td>“Sheep vaccinated with WC+ MDP-GDP also had a reduced incidence of putative CLA abscesses, although confirmation of the presence of C. pseudotuberculosis was only successful in a small number of instances.”</td>
</tr>
<tr>
<td>Simmons et al., 1997</td>
<td>aroB and aroQ genes</td>
<td>“These studies support an important role for IFN-gamma in control of primary C. pseudotuberculosis infections and indicate that aroQ mutants remain attenuated even in immunocompromised animals. This is the first report of an aroQ mutant of a bacterial pathogen, and the results may have implications for the construction of aromatic mutants of Mycobacterium tuberculosis for use as vaccines.”</td>
</tr>
<tr>
<td>Hodgson et al., 1994</td>
<td>phospholipase D (PLD)</td>
<td>“These results confirm the importance of PLD as a protective antigen and demonstrate both the potential for developing an oral caseous lymphadenitis vaccine and C. pseudotuberculosis Toxminus as a live vaccine vector.”</td>
</tr>
<tr>
<td>Walker et al., 1994</td>
<td>40-kDa antigen</td>
<td>“These results strongly suggest that the 40-kDa antigen plays a major role in immunity to caseous lymphadenitis.”</td>
</tr>
<tr>
<td>Menzies et al., 1991</td>
<td>Each dose consisted of sterile saline, mineral oil with 3% Arlacel A and either 5.0 mg dried whole C. pseudotuberculosis cells</td>
<td>“The vaccine appeared to be efficacious in reducing the proportion of sheep that developed CLA when challenged naturally in a field situation.”</td>
</tr>
</tbody>
</table>

Source: Prepared by the authors, 2016.
We can realize that several studies have been conducted to find antigens for vaccine formulations that can ensure a good immune response to vaccinated animals. Some studies have reported promising antigens and others have shown that there is a need to search for new antigens for CL vaccine production more efficient. The in silico analyzes are important to make a possible screening antigens which have a good potential to be used in vaccines. The results from in silico analyzes should be tested experimentally to validate the results. The experimental analysis must start with in vitro tests and evolve for the tests using laboratory animals and finally verify the effectiveness of the vaccine in the target species.

Studies of vaccines against CL of sheep and goat go in this direction in an effort to produce effective vaccines that can be inserted into the programs of control and eradication of CL.

Final considerations

The CL is a disease that affects sheep and goats and occasionally man. The ineffectiveness of drug therapy and failure in its early clinical diagnosis makes it difficult to control the disease. Prophylaxis and control of CL can be conducted by draining lymph nodes of the affected surface or surgical removal thereof. Another method is vaccination the herd.

The course focused on research related to CL and its causative agent is still wide, aiming to reach their full understanding, and consequently obtain effective control of the disease. Prospects for research in thier CL based on some key points. Among them are included the study of the kinetics of the immune response in goats and sheep in different age groups; evaluating the type of vaccine and the vehicle; the study of efficacy of existing vaccines under natural conditions of exposure to disease and in a controlled environment; biochemical and genetic characterization of strains of C. pseudotuberculosis in the region; the characterization and identification of major antigens of C. pseudotuberculosis recognized by antibodies present in the sera of infected goats and sheep or naturally immunized against CL; the study of the relationship between the antigen recognition pattern of C. pseudotuberculosis in different phases of the disease; the production of DNA vaccine against CL and testing in mice, goats and sheep; and, finally, implementation and evaluation of control programs based on vaccination, associated with good production practices in regions and properties, in the real environment.

Many studies have been conducted to obtain vaccines that induce high level of protection of animals against CL. These vaccines may be comprised of dead bacterial cells (bacterins), live bacterial cells, the inactivated toxin (toxoid) of C. pseudotuberculosis or the combination of these components, with or without some type of adjuvant. Besides these, studies have focused on developing vaccines from changes in the genetic material of the organism, in order to obtain advances on the immune protection, for they offered. To perform a proper evaluation of vaccine efficacy, potency, safety, feasibility, among others, should be considered for proper analysis.

Given that there are prospects for further development in the segment of creation of goats and sheep, because Brazil still imports most of the meat consumed, it is important to combat diseases that affect and cause losses to the creation of these animals. Although several studies have already been made in an attempt to develop an effective vaccine against the CL, there is a vast field to be searched and many antigens can still be discovered and studied to give a CL vaccine that is effective, inexpensive and practical. The ultimate goal is to seek vaccine production strategies increasingly better.

Acknowledgment

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Brazil. The authors would like to thank to Universidade Estadual de Montes Claros, Brazil.

BASTOS, B. L. et al. Association between haptoglobin and IgM levels and the clinical progression of caseous lymphadenitis in sheep. BMC Veterinary Research, v. 9, n. 254, 2013.

