ARQUEOTOXICOLOGÍA DE LAS CERÁMICAS COLONIALES: ANÁLISIS ARQUEOMÉTRICO DE LA UTILIZACIÓN DEL PLOMO EN LAS CERÁMICAS DE SANTAFÉ DE BOGOTÁ (COLOMBIA)

ACHEAEOTOXICOLOGY OF COLONIAL CERAMICS: ARCHAEOOMETRIC ANALYSIS OF THE USE OF LEAD IN CERAMICS OF SANTAFÉ DE BOGOTA (COLOMBIA).

José Leonardo Patiño Romero
ARQUEOTOXICOLOGÍA1 DE LAS CERÁMICAS COLONIALES: ANÁLISIS ARQUEOMÉTRICO DE LA UTILIZACIÓN DEL PLOMO EN LAS CERÁMICAS DE SANTAFÉ DE BOGOTÁ (COLOMBIA)

ACHEAEOTOXICOLOGY OF COLONIAL CERAMICS: ARCHAEOEMETRIC ANALYSIS OF THE USE OF LEAD IN CERAMICS OF SANTAFÉ DE BOGOTA (COLOMBIA).

José Leonardo Patiño Romero2

Resumo

O vidrado cerâmico com chumbo é um elemento frequente nos utensílios domésticos da população colonial “neogranadina”, sua presença em Santafé é igual à de outras cidades do continente, devido à expansão colonial europeia a partir do século XVI. A análise que se apresenta aqui corresponde ao estudo arqueométrico feito às cerâmicas de produção “santaferena”, para avaliar sua toxicidade em quanto aos níveis de chumbo que puderam lixivar para os alimentos. A motivação da investigação é a falta de informação existente sobre o tema, a alta representatividade desta cerâmica no registro arqueológico histórico e a toxicidade que representa o chumbo para o ser humano.

1 El término es tomado del libro: HAYLEY, Tommy Ike. 1994. The analysis of 17th-, 18th- and 19th- Century ceramics from Port Royal, Jamaica for lead release: A study in archeotoxicology. Texas: Submitted to the office of graduate studies of Texas A&M University in partial fulfillment of the requirements for the degree of the requirements for the degree of Doctor of Philosophy.

2 Antropólogo, Fundación Erigae. E-mail: joseleonardopatino@gmail.com
Resumen

La cerámica vidriada fue un elemento frecuente en el menaje doméstico de la población colonial neogranadina; su presencia en Santafé era similar a la de otras ciudades del continente, debido a la expansión colonial europea a partir del siglo XVI. El análisis que se presenta corresponde al estudio arqueométrico realizado en estas cerámicas de producción santafereña, para evaluar su toxicidad en cuanto a los niveles de plomo que pudieron lixiviar hacia los alimentos. La motivación de la investigación fue la falta de información existente sobre el tema, la alta representatividad de esta cerámica en el registro arqueológico histórico y la toxicidad que representa el plomo para el ser humano.

Palabras clave: Arqueometría. Cerámica vidriada. Santafé colonial.

Abstract

The lead glazed ceramic were a common element in the household goods the “neogranadina” colonial population; in Santa Fe it presence was similar to other cities in the continent, due to European colonial expansion after the 16th century. The analysis here presents is an archaeometric study of “santafereña” ceramics. The toxicity test measured lead levels that may have been transfered to the food prepared in them. The motivation for this research was the lack of information available for the topic, the high representation of this historical ceramic in the archaeological record and risks to humans health from lead consumption.

Keywords: Archaeometry. Glazed pottery. Colonial Santafé.
La cerámica vidriada con plomo es un elemento que se produjo ampliamente hasta el siglo XIX, cuando se conocieron sus efectos tóxicos sobre la salud. No obstante, hasta la actualidad existe en Colombia una producción residual de este tipo cerámico y de otros elementos que contienen este material.

El vidriado es una técnica que se desarrolló por primera vez en Egipto 5.000 a.c (Rhodes 1990, p. 84). Los egipcios usaron en sus vidriados un alto contenido de metales alcalinos (litio, sodio, potasio, rubidio, cesio y francio), que por ser bastante reactivos y blandos tienden a agrietarse, pelarse y desprenderse; sin embargo, son reconocidos por sus colores y brillos excepcionales. El uso del plomo reemplazó los vidriados alcalinos y permitió superar sus dificultades (Ibídem p. 85), la nueva tecnología se desarrolló entre los territorios de Siria y Babilonia y de allí se expandió por el mundo mediterráneo, hacia Europa y África, de donde fue traído a América a partir del arribo de los europeos al continente y se popularizó como elemento de uso cotidiano en la época colonial.

Las fuentes documentales indican que el vidriado en la Nueva Granada se fabricó en diferentes ciudades, sin embargo, su presencia inicialmente se debe a las importaciones y los menajes domésticos que venían con los europeos. El registro arqueológico demuestra que es el material más común encontrado en las excavaciones realizadas en el centro histórico de Bogotá, en el área y en los estratos correspondientes a la colonia (Therrien et al. 2002 y catálogo virtual en www.erigaie.org).

LA CERÁMICA EN ARQUEOLOGÍA

La cerámica se constituyó hasta hace muy poco en uno de los elementos básicos del menaje doméstico de los seres humanos, dados sus usos en el contexto cotidiano, como parte de varias actividades constructivas, domésticas (almacenamiento, preparación y servicio de alimentos), decorativas y rituales (Shepard 1985).

Por estas condiciones la cerámica es una de las principales evidencias arqueológicas, debido a la calidad de la información que suministra, la resistencia, la cantidad y variedad. Los datos obtenidos de ella son diversos y van de la mano de los objetivos de las investigaciones. Orton et al. (1997), por ejemplo, presentan una enumeración básica al respecto:

1. Evidencia para la datación.
2. Evidencia distribucional, por ejemplo relativa al comercio.
3. Evidencia para la función y/o estatus (Orton et al., 1997, p. 38).

Adicionalmente, se podría agregar otros dos tipos de evidencia que proporciona la cerámica:
1) concepciones estéticas, y
2) información sobre la salud.

Este último punto no es incluido únicamente por las características del presente estudio, sino por el hecho de que en algunas vasijas arqueológicas se representan enfermedades y mal formaciones genéticas, como el caso de la cerámica de Tumaco-Tolita (Colombia-Ecuador). Therrien et al. (2002, p. 15) mencionan algunas otras, que amplían el panorama:

1. Establecimientos de relaciones socioculturales,
2. Evidencia de grupos o individuos que pasan desapercibidos en la historia escrita, así como de las actividades en las que incidió su desarrollo,
3. Hábitos de grupos humanos y las diferencias que surgen en las relaciones mediadas por la cultura material: hábitos de higiene, de alimentación, gustos estéticos o decorativos, enseres para satisfacer las necesidades básicas o los caprichos suntuosos,
4. El seguimiento de la trayectoria de las tradiciones formales y estilísticas de las distintas clases de cerámica sirve de herramienta para entender más claramente el carácter del contacto entre diferentes etnias y grupos sociales, la forma como respondieron a esas relaciones y como se las apropiaron de acuerdo a sus requerimientos, materializándolos en la producción e importación de objetos.

LA CERÁMICA VIDRIADA EN LA COLONIA

El vidriado es una técnica heredada de los europeos que la trajeron consigo cuando llegaron al continente. La introducción de esta cerámica tuvo un desarrollo similar a lo largo de toda la América hispana, por lo cual es posible establecer paralelos entre los países que fueron colonias, como México, Perú y Colombia.

1. La cerámica vidriada es de origen ibérico.

La vertiente tradicional que llegó a nosotros tiene su origen en la expansión del mundo árabe en el siglo VII de nuestra era, cuando la técnica musulmana del lustre que se conseguía con barnices de estaño y óxidos de plata y cobre se difundió en un extenso contexto geográfico de Oriente y Occidente. Su vigencia en la forma de baldosas, azulejos, platos, jarrones e innumerables variedad de objetos de uso diario se puede seguir hasta el siglo XVII. Al producirse la reconquista de la península Ibérica por los reyes castellanos, los artesanos ceramistas se desplazaron por diferentes puntos del territorio difundiendo la tradición de estilo mudéjar, término con el que se designó a la creación artística de los musulmanes españoles que después de la reconquista permanecieron entre los cristianos sin cambiar su religión ni sus costumbres. (Kuon y Samanez 2004, p. 43).
2. Esta loza llegó primero como menaje de los conquistadores, después a través del comercio y, posteriormente, se produjo localmente.

3. Existe un desarrollo de la industria cerámica desigual entre las áreas urbanas y rurales, lo que creo en algunos casos la conservación de técnicas prehispánicas y coloniales de manufactura, como se puede observar en Ráquira.

4. Se establecieron locerías por parte de ceramistas españoles (Ome 2006) o de ordenes religiosas, para el aprovisionamiento necesario que demandaban las nuevas poblaciones mestizas y españolas. Duncan (1985:55) resalta el papel que los misioneros jugaron en el desarrollo de la alfarería, por ejemplo el modelo Jesuita de evangelización y educación, estaba acompañado de empresas productoras de artículos como la cerámica (Therrien et al. 2002 y Therrien 2007).

5. Estas locerías se establecieron en las principales ciudades de los virreinatos como Lima, Cusco, Puebla, Quito, Santafé, Cartagena, etc.

6. El contacto entre las técnicas europeas y americas generó una dinámica en la que se observan diferentes realidades del mismo escenario, es decir, la herencia indígena de elaboración cerámica se conservó, pero también se combinó con la europea y a la vez se estableció una totalmente nueva con la llegada de los europeos.

7. Se introdujo el uso del horno, el vidriado, el torno y otras técnicas que venían de Europa.

8. Con el tiempo, la industrialización y la llegada de nuevas técnicas a finales del siglo XIX y comienzos del XX, el vidriado artesanal se circunscribió a las áreas rurales.

La técnica del vidriado no presenta variación significativa entre los distintos lugares en los que ha sido producida, no obstante posee características que le confieren ciertas particularidades a los distintos vidriados existentes (alcalinos, de sal, de ceniza, mayólica -estanniferas, de boro, bristol -Cinc-, loza y porcelana).

En el caso de la cerámica vidriada en Colombia, su presencia es recurrente en contextos arqueológicos históricos de varias regiones del país. Los tipos identificados no son de origen foráneo únicamente, sino que se observa una producción americana que tuvo diferentes manifestaciones en todo el territorio. Para el caso de Santafé han sido propuestos nueve tipos, de los cuales, tres de ellos fueron tenidos en cuenta para el análisis: Vidriado pasta blanca, vidriado pasta salmón y vidriado verde sobre amarillo³.

³ Ver Therrien et al. 2002 y catálogo virtual en www.erigaic.org
VIDRIADOS DE PLOMO

El óxido de plomo se funde a 886°C, sin embargo sólo es demasiado blando, ya con otros óxidos como el sílice adquiere consistencia y un brillo inigualables. Por encima del cono 6 (1222°C), según Rhodes (1990), empieza la volatilización y la pieza queda con apariencia infracocida (rayable, rugosa y áspera) y seca; por eso recomienda no llegar a tales temperaturas. Los colores se obtienen de diferentes maneras, aplicando el color por debajo del vidriado, en el mismo vidriado o por encima.

El color en el mismo vidriado se obtiene agregando diferentes óxidos, por ejemplo el cobre produce verde, el manganeso púrpura, el hierro marrón y rojo; además la temperatura de cocción y el tipo de atmósfera (oxidante o reductora) afectan en igual medida las tonalidades que se producen - aunque se debe subrayar que el vidriado de plomo no resiste las atmósferas reductoras, en general necesita un exceso de aire (Rhodes 1990, p. 175)-; también se tiene en cuenta la calidad física del vidriado, la intensidad del pigmento, los componentes de la pasta, y si el vidriado aplicado fue crudo o fritado. Todo lo anterior produce una amplia gama de colores que dependen del ceramista y su habilidad para manejar este grupo de variables. Algunos óxidos empleados son los siguientes:

<table>
<thead>
<tr>
<th>hierro</th>
<th>níquel</th>
<th>uranio6</th>
</tr>
</thead>
<tbody>
<tr>
<td>cobre</td>
<td>vanadio</td>
<td>selenio</td>
</tr>
<tr>
<td>cobalto</td>
<td>rutilo</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>ilmenita</td>
<td></td>
</tr>
<tr>
<td>manganeso</td>
<td>cadmio</td>
<td></td>
</tr>
</tbody>
</table>

5 Los vidriados fritos son esmaltes que son fundidos previamente y con el impacto térmico a través del contacto con el agua son vitrificados, a continuación se muelen convirtiéndolos en polvo, y en ese momento en ese estado son aplicados a la pasta para una nueva cocción, esta técnica puede emplearse para reducir la solubilidad de los óxidos que son empleados o para disminuir la temperatura de fundición, y obtener vidriados más resistentes.

6 “El óxido de uranio da colores amarillos y rojos. Después de las restricciones establecidas sobre el uso de uranio en 1942, este material desapareció del taller del ceramista; cuando estuvo otra vez disponible su uso se había casi olvidado” (Rhodes 1990, p. 205).
La consecución del plomo es otra tarea que aporta algunas variables que deben ser enunciadas. Debido a que el plomo no se encuentra de forma bruta en la naturaleza sino siempre en asociación con otros metales, por lo general el cinc o la plata, donde se extrae para su utilización. Las diferentes presentaciones en que viene el plomo son:

- Litargirio PbO. De color amarillento. Es muy tóxico.
- Minio Pb₃O₄. (¼ 3PbO). De color rojo anaranjado, también es tóxico, pero su mayor densidad lo hace preferible, porque es menos pulvigeno. Su mayor contenido en oxígeno, disminuye el riesgo de oscurecimiento por reducción.
- Albayalde o cerusa 2PbCO₃. Pb (OH)₂. (¼ 3PbO.2CO₂.H₂O). Carbonato básico de plomo. Funde antes que el minio, pero es más caro. Al ser menos denso y de grano más fino, tiene más riesgo de intoxicación por vía aérea.
- Galena Spb. (¼ PbO). Es el mineral sulfuro de plomo. Por tostación u oxidación produce primero el litargirio y luego el minio (Morales 2005, p. 148).

La galena, alquifol o sulfuro de plomo es la presentación más frecuente para la obtención de este mineral, el cual se encuentra en depósitos volcánicos y se cristaliza en forma de cubos, otros componentes que tiene son: cadmio, antimonio, bismuto y cobre.

En las colonias españolas las minas donde se extraía plomo eran conocidas como minas de “alcohol”, así era la denominación de la galena o el sulfuro de plomo (Gómez y Fernández 2007, p. 20). En el Archivo General de la Nación se encuentran varios referentes a la explotación de estas minas, en lugares relativamente cercanos a Santafé ubicados en los actuales territorios de Boyacá, Cundinamarca y Santander: Soatá, Vélez, Gachetá, Guateque, Cáqueza, Tibasosa, Nobsa, Tenza, Socorro y Charalá. La documentación va desde el siglo XVII hasta el XIX, recogiendo pleitos por la explotación de las minas, petición de licencias de exploración y de aumento de extracción, pagos de impuestos (quinto real), arriendo de minas, títulos de propiedad y denuncias sobre el descubrimiento de las mismas. En dicha documentación también se revela su importancia como materia prima, incluso en uno de estos documentos se resalta la necesidad de este elemento para la defensa⁷, sabiendo que el plomo es utilizado para la producción de proyectiles.

LA SALUD Y EL PLOMO

El plomo afecta la mayoría de los órganos y sistemas del cuerpo humano: riñones, hígado, sistema nervioso central y periférico, sistema circulatorio, sistema gastrointestinal y aparato reproductor. Los efectos son variados y dependen de variables como las siguientes: Edad, Tiempo de exposición, género, persona, nivel de concentración y dosis consumida. Son varios los órganos y sistemas que ataca, no obstante los más vulnerables son el sistema gastrointestinal, el sistema nervioso y el sistema hepático (Córdoba 2001).

Entre el 90 y 95% del plomo absorbido se deposita en los huesos para el caso de los adultos, en los niños el nivel es algo menor, aproximadamente del 70%. El plomo es acumulativo y va aumentando con el tiempo de exposición.

El hígado por su parte tiene una gran capacidad de captación, aunque dado que este metal entra al sistema circulatorio varios tejidos están comprometidos, tanto blandos como duros – riñones, piel, glándulas, huesos largos, dientes, etc.- (Ibidem).

Para medir los niveles de intoxicación se cuenta con dos medidas: la dosis y el grado de intoxicación. La clasificación por dosis es: letal, letal al 50, letal mínima, tóxica mínima, máxima concentración admisible y valor umbral límite. Para el grado de intoxicación: aguda, crónica y subaguda (Ibidem).

Dependiendo de las variables tratadas se pueden observar diferentes síntomas, en el sistema gastrointestinal se presentan signos de irritación, náuseas, vómito con características de copo de algodón, diarrea de color negro por el sulfuro de plomo o por hemorragia gastrointestinal, también se puede presentar estreñimiento, constipación intestinal y dolor abdominal.

En el sistema nervioso puede ocasionar lesiones graves e irreversibles, en los niños en especial, presentándose encefalopatías⁸; vómitos, náuseas, vértigo, ataxia, temblores, irritabilidad, cambios de conducta, pesadillas, delirios, convulsiones, coma, etc. Los trastornos relacionados con la conducta pueden confundirse con desórdenes psicológicos.

Así mismo se produce irritación y cefaleas persistentes, convulsiones, insomnio y neuritis óptica. En el sistema nervioso periférico se presentan con frecuencia en pacientes crónicos, las polineuropatías, con parálisis especialmente del nervio radial y de los nervios peroneos laterales ocasionado, con la parálisis peronea, el “pie equino” o sea el pie colgante que apoya sólo la punta de los dedos y con la parálisis radial, el “signo de los cuernos” por imposibilidad de extender los dedos tercero y cuarto de la mano, que son innervados para la extensión, por el nervio radial. (Córdoba 2006, p. 342).

⁸ Alteración patológica del encéfalo. (RAE).
En los huesos las alteraciones se presentan más en los niños y jóvenes que en los adultos, sin embargo en todos es acumulativa, aunque más en el último que en los primeros. La parte del hueso donde más se concentra es la cortical que en la trabecular; las lesiones que se pueden presentar son las siguientes:

- Alteración del cristal de hidroxiapatita y, por consiguiente, alteración de la adhesión de la célula ósea a la matriz mineralizada.
- Competencia entre el plomo y el calcio en sus sitios de unión, con alteración de la homeostasis del calcio.
- Alteración de la capacidad de las células óseas para responder a las hormonas.
- Daño a la capacidad de las células óseas para sintetizar y/o excretar componentes de la matriz (colágeno, sialoproteínas).
- Inhibición de la producción de osteocalcina por parte de los osteoblastos.
- Alteración en el acople funcional de osteoblastos y osteoclastos (Sanín et al. 1998, p. 363-364).

 Esto se relaciona con una disminución en la talla que pueden presentar los niños y mal formaciones esqueléticas. Otro efecto nocivo que se conoce es en las mujeres embarazadas, porque puede producir aborto o mal formación del feto. La mayoría de los autores confirma de hecho, que la población más vulnerable a los efectos del plomo son los niños y las mujeres embarazadas, por tal motivo dentro de los estándares existentes acerca de los límites máximos de liberación de plomo de utensilios cerámicos y de consumo semanal o diario, son ellos los que tienen los límites más bajos.

 El tratamiento que se requiere consiste en evacuar el plomo del cuerpo, los únicos medios son a través de la orina, del tracto gastrointestinal, la excreción, el sudor, la exfoliación cutánea y la pérdida de cabello. Las principales son la orina, la excreción y el vómito, los porcentajes de cada uno van de la siguiente manera 76%, 16% y 8% respectivamente. Los tratamientos se basan en estos porcentajes, provocando el vómito, manteniendo el flujo urinario; no obstante cuando la exposición ha sido demasiado prolongada se usa el lavado gástrico y la diálisis (Córdoba 2001).

Metodología

El análisis de materiales arqueológicos teniendo en cuenta las características químicas, físicas y mineralógicas, forman parte del campo de estudio denominado arqueometría. Este análisis brinda valiosa información para las investigaciones
arqueológicas, abriendo la posibilidad de obtener una mayor cantidad de datos del material encontrado y aportando nuevos elementos (Cordero et al. 2006). Solange señala que “Arqueometría” es un término sintético que indica que cosas “antiguas” o fenómenos relacionados con ellas pueden ser medidos y cuantificados” (Leute 1987 apud Solange 2009, p. 15).

En el caso de las cerámicas vidriadas, se requirió de una técnica usada para medir los niveles de liberación de plomo. La espectrometría de absorción atómica es descrita en los siguientes términos:

Este es un método muy potente que debe ser comparado con la espectrometría de emisión. Su sensibilidad para muchos elementos es muy superior al espectrómetro de emisión y puede ser utilizado para muestras mucho más pequeñas. Sin embargo, cuando muchos elementos van a ser estimados de una muestra, nosotros debemos comprender que solo un elemento puede ser medido a la vez porque la fuente así lo exige (Hall 1970, p. 138).

Solamente un grupo limitado de estudios ha sido dedicado al análisis de artefactos para calcular los efectos tóxicos que ellos pueden provocar. El gobierno de los EE.UU., a través del FDA (Food and Drug Administration), ha establecido límites o escalas permisibles de liberación de plomo para los objetos de uso cotidiano, también lo han hecho la Unión Europea y la OMS, esto ha evidenciado el gran potencial de las cerámicas como fuentes de contaminación. Al respecto el gobierno colombiano también ha expedido normatividad (Resolución 1900 de 2008, NTC 916Y 4634).

Las muestras para esta investigación proceden de dos lugares excavados en el sector histórico de Bogotá: Manzana Liévano (hoy espacio ocupado enteramente por la Alcaldía de Bogotá y que se localiza en el marco de lo que fuera la Plaza Mayor (Fundación Erigaie 2007 y 2010)) y la Casa Marqués de San Jorge (casona de propiedad de una reconocida familia del periodo colonial, situada en lo que fue el costado sur de la ciudad (Therrien, Gaitán y Lobo Guerrero 2003)), y de uno adicional proveniente del Convento de San Francisco de la población de Villa de Leyva (Therrien 1995 y 1997).

9 Original en (Ingles): This is basically a very powerful method which should be compared to emission spectrometry. Its sensitivity for many elements is greatly superior to the emission spectrometer and can utilize a much smaller sample. However, when many elements from a number of specimens are to be estimated we have to realize that only one element can be measured at a time since a separate source is required for each element.
La selección de estos sitios fue motivada por los siguientes factores.

1. Exhíben un alto porcentaje de estas variedades cerámicas,
2. Su posición estratigráfica es confiable,
3. Se encuentran en el perímetro urbano seleccionado para el análisis,
4. Presentan materiales con fragmentos o formas más completas.

Las muestras fueron seis en total:

1. Plato UE 5, E 4 (Liévano)\(^{10}\)
 Color y Óxido: Verde – cobre
 (Clasificación – pasta blanca)

Figura 1 – Reconstrucción UE 5, E 4 – Verde (Liévano)

 Plato - UE 5, E 4 (Liévano) (19)
 Color y Óxido: Amarillo - Hierro
 (Clasificación – pasta blanca)

\(^{10}\) Los dibujos de las piezas: Manzana Liévano UE5 E4 Amarillo, Manzana Liévano UE5 E4 – Verde y Casa Marqués de San Jorge UE1 E16, fueron realizados por Nidia Lorena Gacharná (Antropóloga de la Universidad del Cauca).
Figura 2 – Reconstrucción UE 5, E 4 – Amarilla (Liévano)

Plato – Fase 1 (Liévano)
Color y Óxido: Verde y Amarillo - Hierro y cobre
(Clasificación – Verde sobre amarillo)

Figura 3 – Reconstrucción Fase 1 (Liévano)

Forma aún sin determinar – UE 1, E 16 (Marqués de San Jorge) (19)
Color y Óxido: Verde y Amarillo - Hierro y cobre
Clasificación – pasta blanca)
Figura 4 – Reconstrucción UE 1, E 16 (Marqués de San Jorge)

Colador – UE1 E8 (Marqués de San Jorge)
Color y Óxido: Amarillo - Hierro
(Classificación – pasta Salmón)

Figura 5 – Reconstrucción UE 1, E 8 (Marqués de San Jorge)

Plato - E120 UE24 (San Francisco – Villa de Leyva)
Color y Óxido: Verde – Cobre
Figura 6 — Reconstrucción E120, UE 24 (San Francisco — Villa de Leyva)

El análisis realizado a estas piezas consistió en la mediación de niveles de liberación de plomo a través de un espectrómetro de absorción atómica11, procedimiento que se llevó a cabo en el laboratorio de Quimia Ltda. en Bogotá — Colombia. Este procedimiento se efectuó de la siguiente manera.

Lavar la muestra en un solución de detergente alcalino, seguido de dos enjuagues, uno con agua de grifo y otro con agua destilada; el recipiente a analizar es llenado con una solución de ácido acético al 4% dentro de un máximo de ¼ de pulgada. El recipiente es cubierto para que la muestra quede en completa oscuridad. Luego de un periodo de 24 horas en un cuarto a temperatura ambiente, la solución es agitada y la muestra es tomada. Para ser analizada por un espectrómetro de absorción atómica (Hailey 1994, p. 79-80).

Los resultados se interpretaron teniendo en cuenta tres elementos principalmente:

1. Los límites de liberación de plomo para utensilios cerámicos establecidos por instituciones nacionales como el ICONTEC, e internacionales como la WHO, FAO, FDA y BrF.
2. Los límites de consumo de plomo diario y semanal establecidos por instituciones internacionales.
3. El grado de intoxicación dependiendo de la relación establecida entre los niveles de plomo en la sangre y la cantidad de plomo consumido.

Adicionalmente, se vieron los resultados a la luz de la información previa presentada en otras investigaciones que permitieron evidenciar algunos patrones vinculados a los valores obtenidos.

11 Espectrómetro de Absorción Atómica — Perkin Elmer 5000.
La adopción de límites de plomo que puede lixivar la cerámica es una medida acordada internacionalmente. A continuación se presentará un cuadro relacionando esta normatividad.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Categoría</th>
<th>Descripción</th>
<th>Plomo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directiva 84/500/CEE del Consejo, de 15 de octubre de 1984, relativa a la aproximación de las legislaciones de los Estados Miembros sobre objetos de cerámica destinados a entrar en contacto con productos alimenticios</td>
<td>1</td>
<td>Objetos que no puedan llenarse y objetos que puedan llenarse cuya profundidad interna medida entre el punto más bajo y el más horizontal que pase por el borde superior sea inferior o igual a 25 mm</td>
<td>0.8 mg/dm²</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Todos los demás objetos que puedan llenarse</td>
<td>4.0 mg/l</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Utensilios de cocción; envases y recipientes de almacenamiento que tengan una capacidad superior a 3 litros</td>
<td>1.5 mg/l</td>
</tr>
<tr>
<td>NTC 916 Tercera Actualización del 27 de Octubre de 1999 (Vajillería cerámica de uso institucional), tabla de “Límites máximos permisibles de desprendimiento de plomo y cadmio” Basado en la ISO 6486-1 de 1999</td>
<td>Pieza plana</td>
<td>Artículo de cerámico con una profundidad interna no superior a 25 mm, medida desde el punto más bajo hasta el plano horizontal que pasa por el punto de rebosar.</td>
<td>1.7 mg/dm²</td>
</tr>
<tr>
<td></td>
<td>Obra Hueca pequeña</td>
<td>Los cuales tienen una capacidad menor que 1,1 l.</td>
<td>5,0 mg/l</td>
</tr>
<tr>
<td></td>
<td>Obra Hueca Grande</td>
<td>Los cuales tienen una capacidad igual o superior a 1,1 l.</td>
<td>2,5 mg/l</td>
</tr>
<tr>
<td>Cubiertos o piezas planas</td>
<td>En cerámica o vidrio cuya profundidad interna no supere los 25 mm, medidos desde el punto más bajo con respecto al plano horizontal que pasa por el punto de desbordamiento.</td>
<td>0,8 mg/dm²</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Obra Hueca Pequeña(^{15})</td>
<td>Con una capacidad menor a 1,1 litros</td>
<td>2,0 mg/l</td>
<td></td>
</tr>
<tr>
<td>Obra Hueca Grande</td>
<td>Con una capacidad de 1,1 litros o mayor.</td>
<td>1,0 mg/l</td>
<td></td>
</tr>
<tr>
<td>Obra Hueca de Almacenamiento</td>
<td>Con una capacidad de 3,00 litros o mayor.</td>
<td>0,5 mg/l</td>
<td></td>
</tr>
<tr>
<td>ISO 6486-1(^{11}) de 1999(^{14})</td>
<td>Cerámicas de obra hueca pequeña usadas comúnmente para consumo de bebidas, por ejemplo café o té a elevadas temperaturas. Nota: Las copas y tazas son envases de aproximadamente 240 ml de capacidad. Las copas son típicamente curvas y las tazas cilíndricas.</td>
<td>0,5 mg/l</td>
<td></td>
</tr>
<tr>
<td>Utensilios cerámicos de cocción</td>
<td>Utensilios empleados específicamente para calentar o preparar alimentos y bebidas, por métodos térmicos convencionales o microondas.</td>
<td>0,5 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

\(^{12}\) Utensilio Obra Hueca: Artículo de cerámica con una profundidad interna superior a 25mm, medida desde el punto más bajo hasta el plano horizontal que pasa por el punto de rebos (NTC. 4634).

\(^{13}\) Traducción del autor.

\(^{14}\) Lehman 2002, p. 145.

\(^{15}\) Hollowware: Ceramic ware having an internal depth greater than 25 mm, measured from the lowest point to the horizontal plane passing through the point of overflow. Hollowware is subdivided into three categories based on volume (Lehman 2002, p. 134).
La normatividad expuesta señala los distintos valores que se tienen para regular la producción cerámica, teniendo en cuenta el tamaño de la pieza. Debido a las características de la muestra los resultados se dieron en términos de área, es decir dentro de la primera categoría de las normas relacionadas anteriormente, a pesar de que cinco de las seis piezas se encuentran dentro de la segunda categoría; la razón fue la dificultad que conllevaba realizar las pruebas con sólo fragmentos, la solución a este problema se logró mediante la reconstrucción de las piezas hallando su área total, y de esa manera poder compararla con los resultados.

ÍNDICES PERMISIBLES DE CONSUMO DE PLOMO

Algunas instituciones de orden internacional han planteado niveles de consumo de plomo no perjudiciales para la salud, mediante pruebas de ensayo que les permitieron establecer tales estándares. En el siguiente cuadro se relacionan algunos.

| Cuadro 2 – Indices de consumo diario seguro de plomo |
|---|---|---|
| **Criterios** | **WHO – PTWI**¹⁶ | **FDA**¹⁷ | **The Federal Institute for Risk Assessment (BfR)**¹⁸ |
| Para niños por debajo de los 6 años | | 0.006 mg | |
| Para niños de siete años y más | | 0.015 mg | |
| Adultos | | 0.075 mg | |
| Niños de 20 kg de peso promedio | 0.071 mg | | Categoría 1: 0.0175 mg/dm²
Categoría 2: 0.07 mg/l
Categoría 3: 0.07 mg/l |
| Adulto de 70 kg de peso promedio | 0.25 mg | | Categoría 1: 0.0625 mg/dm²
Categoría 2: 0.25 mg/l
Categoría 3: 0.25 mg/l |

¹⁶ PTWI (Provisional Tolerable Weekly Intake) 25 mgc/kg.

¹⁸ Basado en el PTWI, pero teniendo en cuenta unas consideraciones de consumo según las categorías que se establecieron en la Directiva 84/500/CEE (Consulta en: The Federal Institute for Risk Assessment (BfR), 2005)
La OMS (Organización Mundial de la Salud) planteó una cifra de 25 mcg/kg por semana, llamado PTWI, que en el cuadro anterior se adaptó en términos de promedio de peso (para un niño y un adulto) y para el consumo diario (BfR 2005). Sin embargo, en el 2011 en su informe la OMS consideró que el PTWI ya no era seguro y fue retirado sin plantear uno nuevo, debido a que los análisis no lograron identificar los efectos asociados a los niveles de plomo en la dieta, teniendo en cuenta las diferentes poblaciones (WHO 2011, p. 481). No obstante esta cifra continua siendo útil, en la medida que permite trazar un paralelo entre ella y los resultados de las muestras analizadas. También cabe señalar que el PTWI no ha sido abandonado de forma general, ya que muchos países no han adoptado o introducido esta nueva disposición en su normatividad, por lo cual sigue siendo utilizado como parámetro.

Por otro lado, la FDA (Food and Drug Administration) estipuló unos niveles aún más bajos paralelos a los del PTWI, pero llamados ADI (The Acceptable Daily Intake). Para éstos no fue necesario una adaptación, debido a que su medida viene en términos de consumo diario.

Finalmente, los niveles propuestos por el BfR son el producto del entrecruzamiento de la cifra propuesta por la OMS y las categorías o niveles límite de plomo que no deben sobrepasar los utensilios cerámicos.

Intoxicación y niveles de consumo

Kehoe mostró como un nivel en la sangre de 84,8 μg Pb/dl era ya peligroso para la salud, esto vincula el consumo diario y el tiempo de exposición de la siguiente manera (Kehoe apud Hailey 1994, p.157):

| Cuadro 3 - Tasa de ingestión diaria en relación a tiempo de exposición de los primeros síntomas |
|---|---|
| Tasa de ingestión diaria de Plomo (Pb) | Tiempo |
| 3,27 mg/día | ocho meses |
| 2,35 mg/día | cuatro años |
| 1,27 mg/día | ocho años |
| 0,6 mg/día | no se alcanzaría a lo largo de toda la vida |
RESULTADOS

Ahora teniendo lo anterior en cuenta, se pasará a los resultados que arrojó el análisis de espectrometría\(^\text{19}\) realizado a las seis muestras señaladas: tres de ellas fragmentos diagnósticos, y las otras tres, piezas relativamente completas\(^\text{20}\), junto a sus respectivas medidas.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Área estimada de la pieza completa</th>
<th>Resultados de liberación de Plomo en mg/dm(^2)</th>
<th>Total estimado de plomo en la pieza (Plomo mg/dm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Convento de San Francisco – Villa Leyva UE120 E4</td>
<td>4,924458 dm(^2)</td>
<td>16</td>
<td>78,791328</td>
</tr>
<tr>
<td>1. Manzana Liévano UE5 E4 - Verde</td>
<td>5,15221932 dm(^2)</td>
<td>54</td>
<td>276,5994443</td>
</tr>
<tr>
<td>3. Manzana Liévano Fase 1</td>
<td>3,675663 dm(^2)</td>
<td>0,4</td>
<td>1,4702652</td>
</tr>
<tr>
<td>4. Casa Marqués de San Jorge UE1 E16</td>
<td>3,180862562 dm(^2)</td>
<td>1,1</td>
<td>3,498948818</td>
</tr>
<tr>
<td>4. Casa Marqués de San Jorge UE1 E8</td>
<td>4,77 dm(^2)</td>
<td>0,1</td>
<td>0,477</td>
</tr>
<tr>
<td>2. Manzana Liévano UE5 E4 - Amarillo</td>
<td>2,489712178 dm(^2)</td>
<td><0,1</td>
<td>0,248971217^21</td>
</tr>
</tbody>
</table>

Es necesario señalar que los resultados anteriores deben ser multiplicados por el área completa de la pieza para verificar la lixiviación total de cada objeto (cifra que fue colocada en la última columna de la derecha). Al comparar estos datos con la información inicial se observan algunos elementos a destacar:

\(^{19}\) Los análisis fueron practicados en el laboratorio de Química Ltda. (Bogotá - Colombia).

\(^{20}\) Piezas que hacen parte de la colección de referencia de la Fundación Erigaec.

\(^{21}\) Se partió de 0,1 que es el número que fija el resultado debido a que no fue especificada la cifra exacta.
• En términos de la Unión Europea y la ISO (0.8 mg/dm²), cuatro de las seis piezas sobrepasan los límites permitidos.
• En el caso de Colombia solamente tres de las seis piezas sobrepasan los niveles indicados por el ICONTEC (1.7 mg/dm²).
• A la luz de los niveles permitidos para consumo diario, solamente el último se puede considerar seguro, aunque únicamente para la PTWI de un adulto de 70 kg, sin que la diferencia sea significativa respecto al valor límite permitido (0.25 mg).
• Respecto a los niveles en la sangre y consumo diario que plantea Kehoe (citado en Hailey 1994), las dos primeras piezas alcanzarían un valor en la sangre de 84.8 µg Pb/dl en un tiempo muy inferior a los ocho meses debido a sus elevados niveles de lixiviación; Manzana Liévano fase 1, en ocho años aproximadamente; Marqués de San Jorge UE1 E16, en un tiempo alrededor de los ocho meses; las últimas dos piezas están alejadas de los niveles de Kehoe y no causarían inconvenientes.
• Un elemento final, es el patrón que registraron los resultados de las seis muestras. Las dos primeras piezas (Manzana Liévano UE5 E4 –Verde y Convento de San Francisco –Villa Leyva UE120 E4) tienen un mayor contenido de cobre que las demás, evidenciado en el color verde de su decoración completa, estas presentaron los valores más altos de lixiviación de plomo; le siguieron las que tenía un menor porcentaje de cobre (Manzana Liévano Fase 1 y Casa Marqués de San Jorge UE1 E16); y finalmente las que registraron los valores más bajos de liberación no tenían cobre en su decoración (Manzana Liévano UE5 E4 Amarillo y Casa Marqués de San Jorge UE1 E8). Esto revela al cobre como elemento catalizador del proceso de liberación de plomo de las vasijas, afirmación que confirma Rhodes (1990, p. 202):

En los vidriados de plomo el óxido de cobre da distintos tonos de verde. Tales verdes son suaves, cálidos y similares en variedad de color al verde de las plantas... El óxido de cobre sin embargo no debe usarse en vidriados de plomo aplicados al servicio de mesa, por su tendencia a aumentar la solubilidad y desprendimiento de plomo en el vidriado acabado.

Vale resaltar que las piezas vidriadas producidas en Bogotá, teniendo en cuenta el registro arqueológico, eran de uso doméstico, restringidas al servicio y almacenamiento de alimentos, no para la preparación. Adicionalmente se debe señalar que a pesar de que los recipientes de almacenamiento pueden lixiviar un mayor contenido de plomo a los alimentos por el tiempo de exposición, esto no influye en gran medida en la ejecución de las pruebas ya que se agrupada con los
de servicio, diferente ocurre con los que entran en contacto con el fuego que tienen pruebas particulares.

Conclusiones

Basándose en los datos recogidos y en las pruebas realizadas, es posible afirmar que los vidriados plumíferos o simplemente cerámicas vidriadas pudieron ser causa de patologías en la época colonial, no solo por sus altos índices de lixiviación de plomo, sino también por su uso en el servicio de alimentos, además de ser un artículo de una amplia distribución entre todos los segmentos de la población colonial, hecho que es confirmado por el registro arqueológico de Bogotá.
REFERENCIAS BIBLIOGRÁFICAS

HAYLEY, T. I. 1994. The analysis of 17th-, 18th- and 19th- century ceramics from Port Royal, Jamaica for lead release: A study in archaeotoxicology. In partial fulfillment of the requirements for the degree of the requirements for the degree (Doctor of Philosophy) Texas A&M University, Texas.

REPÚBLICA DE COLOMBIA (Ministerio de la Protección Social y Ministerio de Comercio, Industria y Turismo) Resolución Número 1900 (21 de Julio de 2008). Por lo cual se expide el reglamento técnico para utensilios de vidrio y vitrocérmica en contacto con alimentos, utensilios de cerámica empleados en la cocción en contacto con los alimentos y, vajillería cerámica de uso institucional, que se fabriquen o importen para su comercialización en Colombia, y se deroga la Resolución 0408 del 7 de marzo

CRÉDITOS

Este proyecto fue desarrollado gracias a la Beca Jóvenes Investigadores de Colciencias 2012, y se inserta en el proyecto de investigación Dieta, enfermedad y muerte en Santafé de Bogotá en el periodo colonial y republicano. Intoxicación con plomo y estudio de elementos traza en los restos óseos humanos de la cripta del convento de Santa Clara, dirigido por Monika Therrien y Javier Rivera, Fundación Erigaie